Hyperkalemic periodic paralysis M1592V mutation modifies activation in human skeletal muscle Na+ channel.
نویسندگان
چکیده
Mutations in the human skeletal muscle Na+ channel underlie the autosomal dominant disease hyperkalemic periodic paralysis (HPP). Muscle fibers from affected individuals exhibit sustained Na+ currents thought to depolarize the sarcolemma and thus inactivate normal Na+ channels. We expressed human wild-type or M1592V mutant α-subunits with the β1-subunit in Xenopus laevis oocytes and recorded Na+ currents using two-electrode and cut-open oocyte voltage-clamp techniques. The most prominent functional difference between M1592V mutant and wild-type channels is a 5- to 10-mV shift in the hyperpolarized direction of the steady-state activation curve. The shift in the activation curve for the mutant results in a larger overlap with the inactivation curve than that observed for wild-type channels. Accordingly, the current through M1592V channels displays a larger noninactivating component than does that through wild-type channels at membrane potentials near -40 mV. The functional properties of the M1592V mutant resemble those of the previously characterized HPP T704M mutant. Both clinically similar phenotypes arise from mutations located at a distance from the putative voltage sensor of the channel.
منابع مشابه
Hyperkalemic periodic paralysis M1592V mutation modifies activation in human skeletal muscle Na1 channel
CECILIA V. ROJAS,1 ALAN NEELY,2 GABRIELA VELASCO-LOYDEN,1 VERÓNICA PALMA,3 AND MANUEL KUKULJAN3 1Instituto de Nutrición y Tecnologı́a de los Alimentos, Universidad de Chile, Casilla 138-11, Santiago; and 3Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70005-7, Santiago, Chile; and 2Department of Physiology, Texas Tech University Health Sciences Center, Lubb...
متن کاملThe human skeletal muscle Na channel mutation R669H associated with hypokalemic periodic paralysis enhances slow inactivation.
Missense mutations of the human skeletal muscle voltage-gated Na channel (hSkM1) underlie a variety of diseases, including hyperkalemic periodic paralysis (HyperPP), paramyotonia congenita, and potassium-aggravated myotonia. Another disorder of sarcolemmal excitability, hypokalemic periodic paralysis (HypoPP), which is usually caused by missense mutations of the S4 voltage sensors of the L-type...
متن کاملA sodium channel defect in hyperkalemic periodic paralysis: potassium-induced failure of inactivation.
Hyperkalemic periodic analysis (HPP) is an autosomal dominant disorder characterized by episodic weakness lasting minutes to days in association with a mild elevation in serum K+. In vitro measurements of whole-cell currents in HPP muscle have demonstrated a persistent, tetrodotoxin-sensitive Na+ current, and we have recently shown by linkage analysis that the Na+ channel alpha subunit gene may...
متن کاملA double mutation in families with periodic paralysis defines new aspects of sodium channel slow inactivation.
Hyperkalemic periodic paralysis (HyperKPP) is an autosomal dominant skeletal muscle disorder caused by single mutations in the SCN4A gene, encoding the human skeletal muscle voltage-gated Na(+) channel. We have now identified one allele with two novel mutations occurring simultaneously in the SCN4A gene. These mutations are found in two distinct families that had symptoms of periodic paralysis ...
متن کاملVoltage-sensor movements describe slow inactivation of voltage-gated sodium channels II: A periodic paralysis mutation in NaV1.4 (L689I)
In skeletal muscle, slow inactivation (SI) of Na(V)1.4 voltage-gated sodium channels prevents spontaneous depolarization and fatigue. Inherited mutations in Na(V)1.4 that impair SI disrupt activity-induced regulation of channel availability and predispose patients to hyperkalemic periodic paralysis. In our companion paper in this issue (Silva and Goldstein. 2013. J. Gen. Physiol. http://dx.doi....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The American journal of physiology
دوره 276 1 Pt 1 شماره
صفحات -
تاریخ انتشار 1999